当前位置:首页 > 24小时月刊 > 正文

基因组隐藏层帮助植物适应当地环境

Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases. Published March 6 in Nature, the findings show that in addition to genetic 2 diversity found in plants throughout the world, their epigenomic makeup 3 is as varied 4 as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA 5 sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments., ,Epigenomic modifications 6 alter gene 1 expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes 7 control the cellular 8 machinery 9. These changes occur not only in plants, but in humans as well., ,"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Biology Laboratory and holder 10 of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time.", ,By understanding epigenomic alterations 11 in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought. That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator 12., ,Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed 13 methylation(甲基化) patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape 14 Verde Islands. Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment., ,"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."

你可能想看: