Portable, accurate, and highly sensitive devices that
sniff
1 out
vapors3(蒸汽) from explosives and other substances could become as commonplace as smoke
detectors
5 in public places, thanks to researchers at University of California, Santa Barbara. Researchers at UCSB, led by professors Carl Meinhart of mechanical engineering and Martin Moskovits of chemistry, have designed a
detector
4 that uses microfluidic nanotechnology to
mimic
6 the biological
mechanism
7 behind
canine8(犬的)
scent
9 receptors. The device is both highly sensitive to trace amounts of certain
vapor
2
molecules
10, and able to tell a specific substance apart from similar molecules., ,"Dogs are still the gold standard for scent detection of explosives. But like a person, a dog can have a good day or a bad day, get tired or distracted," said Meinhart. "We have developed a device with the same or better sensitivity as a dog's nose that feeds into a computer to report exactly what kind of
molecule
11 it's detecting." The key to their technology, explained Meinhart, is in the
merging
12 of principles from mechanical engineering and chemistry in a
collaboration
13 made possible by UCSB's Institute for Collaborative Biotechnologies., ,Results published this month in
Analytical
14 Chemistry show that their device can detect airborne molecules of a chemical called 2,4-dinitrotoluene, the primary vapor
emanating
15 from TNT-based explosives. The human nose cannot detect such minute amounts of a substance, but "sniffer" dogs have long been used to track these types of molecules. Their technology is inspired by the biological design and microscale size of the canine
olfactory
16 mucus layer, which absorbs and then concentrates airborne molecules., ,"The device is capable of real-time detection and identification of certain types of molecules at concentrations of 1 ppb or below. Its specificity and sensitivity are unparalleled," said Dr. Brian Piorek, former mechanical engineering doctoral student in Meinhart's laboratory and Chief Scientist at Santa Barbara-based SpectraFluidics, Inc . The technology has been patented and exclusively
licensed
17 to SpectraFluidics, a company that Piorek co-founded in 2008 with private
investors
18., ,"Our research project not only brings different disciplines together to develop something new, but it also creates jobs for the local community and hopefully benefits society in general," commented Meinhart., ,Packaged on a fingerprint-sized
silicon
19 microchip and fabricated at UCSB's state-of-the-art cleanroom facility, the
underlying
20 technology combines free-surface microfluidics and surface-enhanced Raman spectroscopy (SERS) to capture and identify molecules. A microscale channel of liquid absorbs and concentrates the molecules by up to six orders of magnitude. Once the vapor molecules are absorbed into the microchannel, they interact with nanoparticles that
amplify
21 their
spectral
22 signature when excited by laser light. A computer database of spectral signatures identifies what kind of molecule has been captured., ,"The device consists of two parts," explained Moskovits. "There's a microchannel, which is like a tiny river that we use to trap the molecules and present them to the other part, a mini
spectrometer(分光仪) powered by a laser that detects them. These microchannels are twenty times smaller than the thickness of a human hair.", ,"The technology could be used to detect a very wide variety of molecules," said Meinhart. "The applications could extend to certain disease
diagnosis
23 or
narcotics24(麻醉剂) detection, to name a few.", ,Moskovits added, "The paper we published focused on explosives, but it doesn't have to be explosives. It could detect molecules from someone's breath that may indicate disease, for example, or food that has spoiled.", ,The fundamental research was developed through an interdisciplinary collaboration between Professors Meinhart and Moskovits, and carried out by former doctoral researchers Dr. Piorek and Dr. Seung-Joon Lee. Their project was funded in part by UCSB's Institute for Collaborative Biotechnologies through the Army Research Office and DARPA.
发表评论