当前位置:首页 > 指点迷津 > 正文

科学家利用光线控制猴子大脑和行为

Researchers reporting online on July 26 in Current Biology, a Cell Press publication, have for the first time shown that they can control the behavior of monkeys by using pulses of blue light to very specifically activate 1 particular brain cells. The findings represent a key advance for optogenetics(光遗传学) , a state-of-the-art method for making causal connections between brain activity and behavior. Based on the discovery, the researchers say that similar light-based mind control could likely also be made to work in humans for therapeutic 2 ends. "We are the first to show that optogenetics can alter the behavior of monkeys," says Wim Vanduffel of Massachusetts General Hospital and KU Leuven Medical School. "This opens the door to use of optogenetics at a large scale in primate 3 research and to start developing optogenetic-based therapies for humans.", ,In optogenetics, neurons are made to respond to light through the insertion of light-sensitive genes 4 derived 5 from particular microbial organisms. Earlier studies had primarily validated 6 this method for use in invertebrates7(无脊椎动物) and rodents 8, with only a few studies showing that optogenetics can alter activity in monkey brains on a fine scale., ,In the new study, the researchers focused on neurons that control particular eye movements. Using optogenetics together with functional 9 magnetic resonance 10 imaging (fMRI), they showed that they could use light to activate these neurons, generating brain activity and subtle changes in eye-movement behavior., ,The researchers also found that optogenetic stimulation 11 of their focal brain region produced changes in the activity of specific neural 12 networks located at some distance from the primary site of light activation 13., ,The findings not only pave the way for a much more detailed 14 understanding of how different parts of the brain control behavior, but they may also have important clinical applications in treating Parkinson's disease, addiction 15, depression, obsessive-compulsive disorder 16, and other neurological conditions., ,"Several neurological disorders 17 can be attributed to the malfunctioning 18 of specific cell types in very specific brain regions," Vanduffel says. "As already suggested by one of the leading researchers in optogenetics, Karl Deisseroth from Stanford University, it is important to identify the underlying 19 neuronal circuits and the precise nature of the aberrations 20 that lead to the neurological disorders and potentially to manipulate those malfunctioning circuits with high precision to restore them. The beauty of optogenetics is that, unlike any other method, one can affect the activity of very specific cell types, leaving others untouched."

你可能想看:

发表评论